High Accuracy Fundamental Matrix Computation and Its Performance Evaluation

نویسندگان

  • Kenichi Kanatani
  • Yasuyuki Sugaya
چکیده

We compare the convergence performance of different numerical schemes for computing the fundamental matrix from point correspondences over two images. First, we state the problem and the associated KCR lower bound. Then, we describe the algorithms of three well-known methods: FNS, HEIV, and renormalization, to which we add Gauss-Newton iterations. For initial values, we test random choice, least squares, and Taubin’s method. Experiments using simulated and real images reveal different characteristics of each method. Overall, FNS exhibits the best convergence performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Accuracy Computation of Rank-constrained Fundamental Matrix by Efficient Search

High Accuracy Computation of Rank-constrained Fundamental Matrix by Efficient Search Yasuyuki SUGAYA† and Kenichi KANATANI†† † Department of Information and Computer Sciences, Toyohashi University of Technology, Toyohashi, Aichi, 441–8580 Japan †† Department of Computer Science, Okayama University, Okayama, 700–8530 Japan E-mail: †[email protected], ††[email protected] Abs...

متن کامل

High Accuracy Computation of Rank-Constrained Fundamental Matrix

A new method is presented for computing the fundamental matrix from point correspondences: its singular value decomposition (SVD) is optimized by the Levenberg-Marquard (LM) method. The search is initialized by optimal correction of unconstrained ML. There is no need for tentative 3-D reconstruction. The accuracy achieves the theoretical bound (the KCR lower bound).

متن کامل

Highest Accuracy Fundamental Matrix Computation

We compare algorithms for fundamental matrix computation, which we classify into “a posteriori correction”, “internal access”, and “external access”. Doing experimental comparison, we show that the 7-parameter Levenberg-Marquardt (LM) search and the extended FNS (EFNS) exhibit the best performance and that additional bundle adjustment does not increase the accuracy to any noticeable degree.

متن کامل

Fundamental Matrix Computation: Theory and Practice

We classify and review existing algorithms for computing the fundamental matrix from point correspondences and propose new effective schemes: 7-parameter Levenberg-Marquardt (LM) search, EFNS, and EFNS-based bundle adjustment. Doing experimental comparison, we show that EFNS and the 7-parameter LM search exhibit the best performance and that additional bundle adjustment does not increase the ac...

متن کامل

Optimal Fundamental Matrix Computation : Algorithm and Reliability Analysis

This paper presents an optimal linear algorithm for computing the fundamental matrix from corresponding points over two images under an assumed model, which admits independent Gaussian noise that is not necessarily isotropic or homogeneous. We derive a theoretical bound and demonstrate by experiments that our algorithm delivers results in the vicinity of the bound. Simulated and real-image exam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006